A Novel Detection Method of Rail Insulation Defects based on FFC-Swin-Transformer
编号:134 访问权限:仅限参会人 更新:2025-10-13 11:33:10 浏览:19次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
As urban rail transit grows, stray current seriously threatens the safety of power systems and oil/gas pipelines. Rail-to-earth insulation the key to control stray current. Aiming at the problem that it is difficult to detect and locate the rail insulation defects of DC traction power supply system, a novel rail insulation defect detection method based on the FFC-Swin-Transformer is proposed. By establishing a four-layer "catenary-rail-SCCN-earth" equivalent circuit model and integrating multi-train operation conditions, a rail potential dataset is efficiently generated via parallel computing. Time-domain signals of rail potential are converted to frequency-domain features using Fourier transform, and the fused time-frequency information is fed into an improved FFC-Swin-Transformer network to achieve accurate detection of rail insulation states. Experimental results show that after training on 22496 sample groups, the model achieves a test accuracy of 82.95%, effectively identifying section insulation defects and exhibiting promising engineering application potential.
关键词
DC metro system,stary current,defect detection,rail potential,rail insulation
报告人
Feilong Liu
student Southwest Jiaotong University

稿件作者
Feilong Liu Southwest Jiaotong University
Wei Liu Southwest Jiaotong University
Shuangrui Yang Southwest Jiaotong University
Zhuoxin Yang Southwest Jiaotong University
Yuning Tang Southwest Jiaotong University
Songyuan Li Southwest Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月30日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询