Wheat Seed Orientation Detection Method Research for Mirco-invasive Sampling by Improved Deep-learning Framework
编号:131 访问权限:仅限参会人 更新:2025-10-13 11:31:13 浏览:2次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This study addresses the problem of wheat seed pose detection prior to slicing and proposes an improved YOLO-WP (YOLOv8-WheatPose) model. Built upon the YOLOv8n framework, the method detects seed embryos and awns, calculates the embryo orientation vector from bounding box centers, and determines pose angles using the arctangent function. To enhance performance, we integrate the C2fFaster module for optimized cross-stage connections, employ an Efficient Multi-scale Attention (EMA) mechanism for improved feature representation, and redesign the neck network with a Bidirectional Feature Pyramid Network (BiFPN) for effective multi-scale fusion. Experimental results show that YOLOv8-WP achieves 81.8% AP in embryo and awn detection, reduces parameters by 23.33%, maintains a model complexity of 6.1 GFlops, and achieves an average angular error of less than 2°.
关键词
Wheat seed,YOLOv8,C2fFaster module ,Efficient Multi-scale Attention,Bidirectional Feature Pyramid Network
报告人
luo haijun
student Anhui Agricultural University

稿件作者
Weibin Guo Hefei Institutes of physical science, Chinese Academy of Sciences
Lifu Gao Chinese Academy of Sciences;Hefei Institutes of physical science
luo haijun Anhui Agricultural University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月30日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询