Prediction of Circuit Breaker Closing Time Under Small-Sample Conditions with an Augmented Consistency Regularization Neural Network
编号:127 访问权限:仅限参会人 更新:2025-10-13 11:30:03 浏览:3次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
When transformers or shunt capacitors are energized on no-load, unknown residual flux or residual voltage can provoke severe inrush current. The resulting high peaks may cause relay mal-operation and endanger equipment. Although controlled closing can effectively reduce inrush current, it demands extremely precise control of the closing angle. Owing to mechanical scatter and environmental influences, an SF₆ breaker’s closing time is inherently dispersed. This paper proposes a neural-network predictor trained with historical data and ambient variables; an Augmented Consistency Regularization Neural Network (ACR-NN) is proposed to cope with the limited data set. Tests show a prediction error below 0.5 ms, fully satisfying the requirement for inrush suppression and verifying the algorithm’s practicality and effectiveness.
关键词
inrush-current suppression,neural network,prediction algorithm,ACR-NN,SF6 circuit breaker
报告人
Jia Zhou
Engineer China Southern Grid

稿件作者
Jia Zhou China Southern Grid
Zhi Wang China Southern Grid
Dongqi Liu Changsha University of Science and Techonolgy
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月30日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询