A Gated Temporal Convolutional Network Approach for Photovoltaic Power Prediction
编号:108 访问权限:仅限参会人 更新:2025-10-13 11:24:20 浏览:6次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Accurate forecasting of photovoltaic (PV) power is crucial for enhancing the reliability and economic viability of renewable energy systems. In this paper, we propose a novel hybrid architecture, GTCN, which synergistically integrates a Temporal Convolutional Network (TCN), a gated cross-attention mechanism, and a parallel Gated Recurrent Unit (GRU) decoder. The model efficiently captures both long-range temporal features and dynamic sequential dependencies in PV time series. Extensive experiments on real-world PV datasets demonstrate that our approach significantly outperforms traditional models such as LSTM, GRU, and standalone TCN in terms of forecasting accuracy and robustness.
关键词
Deep learning; Gated temporal convolutional network; Photovoltaic power prediction.
报告人
Xihui Zhang
Mater Kunming University of Science and Technology

稿件作者
Jian Wang Kunming University of Science and Technology
Xihui Zhang Kunming University of Science and Technology
Fu Shen Kunming University of Science and Technology
Kaizheng Wang Kunming University of Science and Technology
Jieshan Shan Kunming University of Science and Technology
Zilong Cai Kunming University of Science and Technology
Hongchun Shu Kunming University of Science and Technology
Yiming Han Kunming University of Science and Technology
Huiyuan Nie Yalong River Hdropower Development Company, Ltd.
Xiangyu Tang Yalong River Hdropower Development Company, Ltd.
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月30日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询