Transformer-KAN: A Hybrid Deep Learning Framework for Remaining Useful Life Prediction
编号:79 访问权限:仅限参会人 更新:2025-11-10 11:41:49 浏览:114次 口头报告

报告开始:2025年11月23日 09:10(Asia/Shanghai)

报告时间:20min

所在会场:[S4] Parallel Session 4 [S4-2] Parallel Session 4-23 AM

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Accurately forecasting the Remaining Useful Life (RUL) of critical engineering systems is essential for effective Prognostics and Health Management (PHM), ensuring reliability, safety, and cost efficiency. Conventional deep learning approaches, such as Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs), often struggle to simultaneously model long-term dependencies and intricate nonlinear relationships in sensor data. To address these challenges, we propose Transformer-KAN (TransKAN), a novel hybrid model that integrates Transformer-based temporal feature extraction with the Kolmogorov–Arnold Network (KAN) for enhanced non-linear feature mapping. By leveraging the multi-head attention mechanism, the Transformer module efficiently learns long-range dependencies and degradation patterns in time-series data, while KAN enhances non-linear representation learning by bridging approximation theory with modern machine learning. We assess TransKAN on the widely used CMAPSS dataset, comparing its performance against leading deep learning models. Experimental results highlight its superior accuracy in RUL estimation, reinforcing its effectiveness in predictive maintenance.
关键词
remaining useful life,Transformer,Kolmogorov–Arnold Network,deep learning,attention mechanism
报告人
Enxiu Wang
Phd student Xi'an Jiaotong University

稿件作者
Enxiu Wang Xi'an Jiaotong University
Zihao Lei Xi'an Jiaotong University
Zhizhen Ren Xi'an Jiaotong Univerisity
Zimin Liu Xi'an Jiaotong University
Yu Su Xi'An Jiaotong University
Zhifen Zhang Xi'an Jiaotong University
Guangrui Wen Xi'an Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询