Class-incremental Transfer Learning Method for Cross Domain Lifelong Intelligent Diagnosis
编号:78 访问权限:仅限参会人 更新:2025-11-10 11:41:30 浏览:27次 口头报告

报告开始:2025年11月23日 08:50(Asia/Shanghai)

报告时间:20min

所在会场:[S4] Parallel Session 4 [S4-2] Parallel Session 4-23 AM

暂无文件

摘要
In the long-term operation and service of machinery, new fault modes continuously emerge, placing higher demands on the continual learning and intelligent diagnostic capabilities of fault diagnosis models. Intelligent diagnosis driven by class-incremental learning offers a promising approach to ensuring safe operation throughout the equipment lifecycle. However, existing class-incremental learning methods fall short in addressing the challenge of efficient incremental transfer diagnosis under cross operating conditions. To overcome this limitation, this paper proposes a cross domain intelligent diagnostic method driven by class-incremental transfer diagnostic (CITD). Firstly, a novel knowledge distillation strategy is developed to mitigate catastrophic forgetting in incremental transfer diagnostic scenarios. Then, a generalization training and fast adaptation strategy is introduced to improve the generalization ability of the model for incremental transfer diagnosis. Experimental validation on a subway train transmission system dataset demonstrates that the proposed CITD method effectively adapts to cross-domain incremental transfer diagnosis tasks, delivering superior performance and outperforming several state-of-the-art class-incremental learning methods.
关键词
fast adaptation,class-incremental learning,knowledge distillation,transfer learning,lifelong diagnosis
报告人
Cuiying Lin
PhD Student Beijing Institute of Technology

稿件作者
Cuiying Lin Beijing Institute of Technology
Leijun Shi Beijing Institute of Technology
Kangkang Zhao Beijing Institute of Technology
Junhui Qi Beijing Institute of Technology
Haiqiang Wang Beijing Institute of Technology
Yun Kong Beijing Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询