Research on gearbox fault diagnosis based on multi-channel vibration signal fusion
编号:72 访问权限:仅限参会人 更新:2025-11-10 11:37:47 浏览:8次 口头报告

报告开始:2025年11月23日 09:50(Asia/Shanghai)

报告时间:20min

所在会场:[S3] Parallel Session 3 [S3-2] Parallel Session 3-23 AM

暂无文件

摘要
As a typical power transmission component in industrial equipment, the gearbox plays a crucial role in determining the performance and service life of mechanical systems. Complex transmission paths and variable conditions cause fault signals to be multi-directional and asynchronous, limiting single-channel diagnosis. Multi-sensor monitoring enhances accuracy but creates high-dimensional redundancy that complicates feature extraction and reduces efficiency. To address this challenge, this paper proposes a fault diagnosis framework that integrates multi-channel information through multi-level fusion. Taking the frequency modulation characteristics and periodic impact responses of gearbox vibration signals, a data-level fusion strategy based on normalized impulsive energy kurtosis is designed to enhance the identifiability and integrity of fault features. In terms of model structure, a parallel lightweight convolutional neural network is constructed to achieve multi-level integration of information. The proposed model is validated on a two-stage helical gearbox test rig dataset, and the results demonstrate its superior fault recognition and generalization capability under complex operating conditions.
 
关键词
gearbox, fault diagnosis, Multi-channel vibration signal fusion
报告人
Yang Guan
PhD Hebei University of Technology

稿件作者
Yang Guan Hebei University of Technology
Dong Zhen Hebei University of Technology
Hao Zhang Hebei University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询