ConvTimeNet: Hierarchical Fully Convolutional Model for Proton Exchange Membrane Fuel Cells Degradation Prediction
编号:66 访问权限:仅限参会人 更新:2025-11-10 11:33:35 浏览:11次 口头报告

报告开始:2025年11月23日 11:10(Asia/Shanghai)

报告时间:20min

所在会场:[S2] Parallel Session 2 [S2-2] Parallel Session 2-23 AM

暂无文件

摘要
The superior environmental performance of proton exchange membrane fuel cells (PEMFCs) has led to their widespread application in transportation, distributed power generation, and other fields. Accurate degradation prediction of PEMFCs is crucial for reducing costs and enhancing the reliability of equipment operation. However, capturing the degradation details of PEMFCs from measurement data with high-frequency noise is a challenging task. To address this, this paper proposes a hierarchical pure convolution data-driven model, ConvTimeNet, which focuses on local degradation modeling while capturing the multi-scale dependencies between degradation data. Specifically, this study introduces a deformable patch layer to perceive the local patterns of temporal dependence units. The extracted local patterns undergo multi-scale dependency analysis on the designed hierarchical pure convolution blocks. Consequently, both local patterns and multi-scale dependencies are effectively modeled, thereby enabling health status monitoring of PEMFCs. The proposed method is also validated in multi-step forecasting scenarios; for a 64-step horizon, the MAPE is only 0.203%.
关键词
PEMFC; data-driven; health status monitoring; convolutional neural network; degradation modeling
报告人
Dengliang Zhu
doctoral candidate Wuhan University of Science and Technology

稿件作者
Dengliang Zhu Wuhan University of Science and Technology
Rui Yuan Wuhan University of Science and Technology
Yong Lv Wuhan University of Science and Technology
Hongan Wu Wuhan University of Science and Technology
Wenzhe Sun Wuhan University of Science and Technology
Feng Yuan Wuhan University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询