A Physics-Guided Fusion CNN Framework for Bearing Fault Diagnosis under cross-opereating conditions
编号:57 访问权限:仅限参会人 更新:2025-11-10 11:30:08 浏览:12次 口头报告

报告开始:2025年11月23日 11:30(Asia/Shanghai)

报告时间:20min

所在会场:[S1] Parallel Session 1 [S1-2] Parallel Session 1-23 AM

暂无文件

摘要
Current intelligent bearing fault diagnosis models based on end-to-end learning generally suffer from insufficient interpretability, primarily due to the lack of guidance from physical mechanisms. To address this issue, this paper proposes a fault diagnosis method that integrates physical information. By enhancing features through post-processing and converting one-dimensional signals into two-dimensional images, the method effectively embeds physical knowledge. Experiments on publicly available bearing datasets demonstrate that the proposed method achieves a diagnostic accuracy of 97.40%, showing significant advantages over baseline models in terms of stability and accuracy. This validates the effectiveness of physics-guided information in enhancing model performance and interpretability.
关键词
fault diagnosis,rolling bearing,cross-operating condition,convolutional neural network,physics informed model
报告人
暂无
稿件作者
Zhicheng Di Northwestern Polytechnical University
Tao Liu Northwestern Polytechnical University
Tianwei Zhang Northwestern Polytechnical University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询