Structural Health Monitoring of CFRP Composite Structures Using a Hybrid CNN-Vision Transformer Model
编号:56 访问权限:仅限参会人 更新:2025-11-10 11:29:26 浏览:51次 口头报告

报告开始:2025年11月23日 11:10(Asia/Shanghai)

报告时间:20min

所在会场:[S1] Parallel Session 1 [S1-2] Parallel Session 1-23 AM

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Advanced Structural Health Monitoring (SHM) systems are essential for aging aerospace infrastructure and Carbon Fiber Reinforced Polymer (CFRP) structures. Though Lamb wave-based Non-Destructive Testing (NDT) effectively monitors CFRP, traditional methods struggle with complex wave patterns, environmental variations, and large data volumes from continuous monitoring. This research overcomes these limitations by developing an AI system that integrates Lamb wave testing with Vision Transformer. The approach captures Lamb wave signals via actuators and sensors settled on CFRP structures, converting them into Continuous Wavelet Transform (CWT) inputs, and automates damage identification. This framework improves detection accuracy and reliability, enabling real-time assessment.
关键词
structural health monitoring,EfficientNet,nondestructive testing (NDT),CFRP,Continuous Wavelet Transform,Vision Transformer
报告人
Huanjia HU
Student City University of Hong Kong

稿件作者
Huanjia HU City University of Hong Kong
Xuebing XU City University of Hong Kong
Cheng LIU City University of Hong Kong
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询