High-Fidelity 3D Reconstruction and Robust Point Cloud Registration for Aero-Engine Blades
编号:50 访问权限:仅限参会人 更新:2025-11-10 11:25:27 浏览:12次 口头报告

报告开始:2025年11月23日 08:30(Asia/Shanghai)

报告时间:20min

所在会场:[S1] Parallel Session 1 [S1-2] Parallel Session 1-23 AM

暂无文件

摘要
This paper presents a novel integrated framework for high-precision aero-engine blade damage detection and quantification through advanced 3D reconstruction and point cloud registration techniques. Traditional inspection methods suffer from limitations, including manual dependency, 2D constraints, and environmental sensitivity. To address these challenges, we propose a comprehensive approach that combines COLMAP structure-from-motion with CasMVSNet for high-fidelity 3D reconstruction, implements a robust multi-stage denoising strategy integrating K-means clustering with score-based refinement, and introduces an enhanced Scale-Invariant Feature Transform (SIFT) and 3D Shape Context (3DSC) fusion descriptor for reliable feature matching. The framework employs the Generalized Iterative Closest Point (GICP) algorithm for precise point cloud registration between damaged and intact blade models. The illustrated results have demonstrated that the proposed method achieves robust geometric comparison capabilities under challenging conditions, including noise and geometric deformation, providing a reliable solution for intelligent aero-engine blade damage detection.
关键词
Aero-engine blade,3D reconstruction,point cloud denoising,point cloud registration
报告人
Huayue Luo
student Xi'an Jiaotong University

稿件作者
Huayue Luo Xi'an Jiaotong University
laihao yang xi'an jiaotong university
如强 严 西安交通大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询