Dual-Branch Texture Transfer Super-Resolution for Terahertz Imaging
编号:49 访问权限:仅限参会人 更新:2025-11-10 11:24:56 浏览:16次 口头报告

报告开始:2025年11月22日 17:20(Asia/Shanghai)

报告时间:20min

所在会场:[S4] Parallel Session 4 [S4-1] Parallel Session 4-22 PM

暂无文件

摘要
Terahertz (THz) imaging has shown great potential in nondestructive testing and biomedical diagnostics due to its non-ionizing and penetrative characteristics, but its practical value remains constrained by low resolution, strong noise, and blurred textures. Existing super-resolution (SR) methods designed for natural images often fail in the THz images, leading to spurious artifacts that obscure defect features. To address these limitations, we propose a Dual-Branch Texture Transfer Super-Resolution (DBTT-SR) framework. The model employs a dual-branch generator, where one branch reconstructs structural components from low-resolution inputs and the other one recovers high-frequency textures from reference images, with cross-attention and deformable convolution enabling dynamic feature alignment. A multi-scale discriminator further imposes hierarchical adversarial supervision, ensuring both local detail fidelity and global structural consistency. Experiments conducted on a dual-frequency THz defect dataset demonstrate that DBTT-SR achieves superior quantitative and qualitative performance, reaching 12.01 dB in PSNR and faithfully preserving defect-specific textures that previous methods fail to recover. These results establish DBTT-SR as an effective and generalizable solution for high-fidelity THz imaging with promising applications in industrial inspection and biomedical imaging.
关键词
Imaging, Defect Analysis, Texture Transfer, Super-resolution Reconstruction (SR), Adversarial Learning, Defect Analysis
报告人
Yijing Liu
Student Xi'an Jiaotong University

稿件作者
Yijing Liu Xi'an Jiaotong University
Nuoman Tian Xi'an Jiaotong University
Xingyu Wang Xi'an Jiaotong University
Yafei Xu Zhengzhou Research Institute, Harbin Institute of Technology
Hongkuan Zhou 1Science and Technology on Thermal Energy and Power Laboratory
Liuyang Zhang Xi'an Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询