An Transformer-LSTM Network for Composite Performance Degradation Prediction
编号:46 访问权限:仅限参会人 更新:2025-11-10 11:23:12 浏览:16次 口头报告

报告开始:2025年11月22日 16:00(Asia/Shanghai)

报告时间:20min

所在会场:[S4] Parallel Session 4 [S4-1] Parallel Session 4-22 PM

暂无文件

摘要
Accurately predicting the performance degradation of composite laminates remains a considerable challenge, primarily due to the multi-physics coupled phenomena, intricate damage evolution, and the inherent limitations of conventional mathematical formulations. Deep learning, with its outstanding capacity for pattern recognition and complex mapping, offers a robust solution to circumvent the limitation of physics priors. In this work, a novel Transformer-LSTM network is presented specifically for the prediction of the performance degradation of composite laminates. During this process, the Transformer-LSTM network is systematically constructed to optimize its performance for the unique features of composite performance degradation. A series of experiments are implemented to verify the effectiveness of the model on several high-dimensional and nonlinear composite degradation dataset. This work emphasizes the potential of advanced adhibition of deep learning to predict the performance degradation of composite laminates with self-data, which provides a novel insight for the accurate prediction of nonlinear and high-dimensional degradation data in actual applications.
关键词
Composite, performance degradation prediction, data-driven, Transformer-LSTM network
报告人
Xin He
Master Harbin Institute of Technology

稿件作者
Yafei Xu Harbin Institute of Technology
Xin He Harbin Institute of Technology
Hua Zhang Harbin Institute of Technology
Xiyuan Peng Harbin Institute of Technology
Datong Liu Harbin Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询