A Cross-Source Domain Contrastive Learning-guided Invariant Adversarial Network for Mechanical Fault Diagnosis Under Unseen Conditions
编号:44 访问权限:仅限参会人 更新:2025-11-10 11:21:57 浏览:22次 口头报告

报告开始:2025年11月22日 14:40(Asia/Shanghai)

报告时间:20min

所在会场:[S4] Parallel Session 4 [S4-1] Parallel Session 4-22 PM

暂无文件

摘要
Although domain adaptation methods are commonly used in mechanical fault diagnosis to mitigate the domain shift problem, they typically rely on target domain data being available during training. To address this issue, this paper proposes a cross-source domain contrastive learning-guided invariant adversarial network (CSDCL-IAN). The model first employs a residual attention network to construct a feature extractor, aiming to enhance discriminative fault information. Subsequently, a cross-source domain contrastive learning mechanism is designed, which extracts common features across multi-source domains by making intra-class features closer and inter-class features more distinct. Finally, unseen-condition data are input into the trained CSDCL-IAN to realize cross-domain fault diagnosis. In transfer diagnosis experiments on a planetary transmission system test rig, CSDCL-IAN yields an average diagnostic accuracy of 98.15% on across six transfer tasks, which significantly verifies its superior domain generalization ability and cross-domain diagnostic performance.
关键词
contrastive learning,fault diagnostics,domain generalization,varying conditions
报告人
Jie Zhang
PhD student Beijing Institute of Technology

稿件作者
Jie Zhang Beijing Institute of Technology
Kangkang Zhao Beijing Institute of Technology
Yufan Lv Beijing Institute of Technology
Leijun Shi Beijing Institute of Technology
Yun Kong Beijing Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询