Bearing prognostic using a self-attention sequence-to-sequence network
编号:50 访问权限:仅限参会人 更新:2021-08-16 14:52:57 浏览:223次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Remaining useful life (RUL) prediction of bearing plays an important role for rotating machinery operation condition monitoring and it can offer momentous information for machinery system maintenance. The recurrent neural network (RNN) methods have been widely used to predict bearing RUL. However, the RNN based methods cannot address the prediction problem of high-dimension features input data and some critical information might be missed due to its health index development. This paper reports a self-attention sequence-to-sequence network (SASN) to predict bearing RUL, which utilizes the self-attention mechanism and positional encoding to structure the state's relationship of short-term and long-term through the past and current measured high-dimension features. The proposed network consists of an encoder and a fully connected layer. The encoder utilizes a long-time and short-time self-attention mechanism to catch the bearing degradation information, and the fully connected layer maps the embedding from encoder output into the predicted RUL result. The proposed network is suitable for high-dimension features data processing, which can avoid the information loss of artificially health indicator construction of common RUL prediction methods. The proposed method is validated in a case study of the bearing degradation dataset, and the results demonstrate that this method can effectively predict the bearing remaining useful life.
关键词
condition monitoring,Remaining useful life,self-attention mechanism,sequence-to-sequence network
报告人
Tengyi Peng
Harbin Institute of Technology, Shenzhen

稿件作者
Tengyi Peng Harbin Institute of Technology, Shenzhen
Shilong Sun Harbin Institute of Technology, Shenzhen
Yu Zhou Shenzhen University
Xiao Zhang South-Central University For Nationalities
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月01日

    2022

    11月03日

    2022

  • 10月30日 2022

    初稿截稿日期

  • 11月09日 2022

    注册截止日期

主办单位
Qingdao University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询